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An approximate method of solving certain problems of the theory of thin 
plates and shells is developed in the following; it is called here the 
“method of resolution”. 

The operators of the equations involved are resolved, by introducing 
so-called connecting functions. in such a manner that the knowledge of 
these functions may lead to a comparatively simple solution of the prob- 
lem. The problem reduces to the determination of the functions indicated 
from the condition of equivalence of the original problem with the re- 
solved one; this determination is carried out with the aid of the method 
of Ritz. Such a method of resolution permits the equations of the theory 
of thin shells, referred to the principal curvature lines of the middle 
surface, to be subdivided into two systems of ordinary differential equa- 
tions, each referred to one of the two principal curvatures, respectively. 
The obtained equations are treated as equations for displacements and 
slopes of two groups of curved bars extending, respectively, along the 
two principal curvatures of the middle surface of the shell. 

1. Essence of the method of resolution. In order to explain the method 
under consideration we shall discuss here a special case. Suppose a 
certain domain a and its boundary S are prescribed. It is required to 
find a definite function u(P) of the point P, differentiable a necessary 
number of times and satisfying the differential equation 

Au = f(P) 

in the domain a and boundary conditions of the form 

rj u = gj (P) (i = 1 *..., r”) (1.2) 

along the boundary S. The notations used here are as follows: A repre- 
sents a linear differential operator; f(P) is a function prescribed in 
Q; I?. are linear, generally speaking, 

i 
differential operators; gi(P) are 

funct ons prescribed along S. 
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Assume that the operator A can be resolved into some simpler linear 
operators having a sum equal to A and that each of the operators can be 
inverted comparatively simply; assume, furthermore, that the correspond- 
ing resolution of the boundary conditions (1.2), related to the resolu- 
tion of the operator A, is possible as well. In order to simplify the 
following presentation we assume A = Al + A2, which in connection with 
(1.1) leads to 

Ala = fl (J% Azu = --f1w + f(P) (1.3) 

The function fl(P) , which we shall call the connecting function, must 
be determined from the condition of equivalence of the original and the 
resolved equations. This condition consists in the case under considera- 
tion of the equality of the functions u(P). appearing in both equations 
(1.3). 

For the determination of f,(P) we use the direct method. TO this end 
we choose a complete sequence (4,) of linearly independent coordinate 
elements in the Hilbertian functional space L,(n) and we prescribe an 
aPProximation for fl(P) in the form 

(1.4) 

Then, inverting the operators AI and A, in (1.3), we obtain 

uln = Al-‘fl, (J’) = i a,,.~, utn = - &-‘f,, (P) + A%-I~ (P) = ua - i akuzk (1.5) 

where 
k=l Is=1 

u 20 = A,-? (P), Uik = ‘+$)k (p), a,k = na-“Fk (P) (1.6) 

The function ul,, satisfies the part of the boundary conditions (1.2) 
which is associated with the operator Al; the function ux,, satisfies 
the boundary conditions which are associated with the operator A,. We 
introduce the notations 

n- 

vk = ‘lk $1 U2k (1.7) 

We shall consider the quantity #,, as an error function of the approxi- 
mate solution, while the norm of the element z+b,,, denoted by 11 $,, 11 , will 
be used as a measure of the error; an expedient procedure for determina- 
tion of the constants a& [ 1 1 Is then based upon the condition that 

II +n II * assumes its minimum value. We determine the metric of the 
Hilbertian space under consideration by the formula 
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and the quantity [y3n, y5,, 1 by one of the following formulas: 

The use of the second scalar product (1.8) is possible when the oper- 
ator A is positive. From the condition that [I $,, 11 2 assume its minimum 
value we then are able to derive a system of linear algebraic equations 
for the constants ak: 

5 a,+ [$ Uml = i”20, v,] (m=l,...,n) (1.9) 
k=l 

The system (1.9) always admits a solution if the elements VI. . . . , v,, 
are linearly independent of each other. In turn, the mutual linear in- 
dependence of VI, _. . , v, is a consequence of that of +I, . . . , &,. pro- 
vided that the operator A can be invertible. Indeed, if both parts of 
the equality 

k=l 

ckvk = A, -1(~lCk~k)+A2-1(i ‘kqk) 

k=l 

Fig. 1. 

in 
of 

which follows from (1.7)) are multi- 
plied by A1A2, leading to 

AlA2( i ckvk) = A( i Ck’Pk) (1.10) 

k=l k=l 

and if we assume that it is possible to 
find such non-simultaneously-vanishing 
constants cl, . . . , c,, that 

n 

z 
k= 1 

CkVk = 0, 

then from (1.10) we obtain 

n 

A kzl ‘k’pkj = O, Ck’pk = 0 

k=l 

contradiction to the assumption concerning mutual linear independence 

4 1’ . . . . fP n. 

The idea of the method of resolution can be realized in various ways, 
depending on the nature of the problem. Sometimes, for instance, it 
proves expedient to carry out an incomplete resolution. in the sense that 
not all of the deviced new operators have to be of simple structure and 
invertible in the process of solution. Several procedures of solution can 
be obtained in cases of the kind in question. Take, for example, the 
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problem considered and assume that the operator A, is not to be inverted: 
if the function fl(P) is prescribed in such a way that the function u2,, 
satisfies all boundary conditions, then the coefficients ak can be deter- 
mined from the condition that ug,, satisfies approximately the first of 
Equations (1.3). Another possible way is to start directly from a func- 
tion uln satisfying some of the boundary conditions associated with the 
operator Al, to construct f,(P) and us,,, and then to determine ok from 
the condition of matching of uln and a2,,. 

2. Besolution of the equilibrium equations for a shell element. Using 
the principal curvature lines (I and 4, of the middle surface of the 
shell as coordinate lines (see Figure) and considering a line element of 
the shell extending in the direction of a tl-line with the boundary sur- 
faces 5, = const and 52 + g2 = const. we obtain the following system of 
equations for the equilibrium of such an element: 

T+N, a% = - ala2 (P, - q,). 
Ml2 

NWfp=Z 

where aI, a2 are Lame’ parameters, while R,, R2 are principal curvature 
radii of the middle surface of the shell; pl, ~2, p,, ql, q2, qn, aI, n2 
are forces and moments directed along z, y, n and referred to unit middle 
surface area; finally, the quantity r is the intensity per unit length 
of opposite equal forces on OB and AC. The forces and moments ql, q2, q,,, 

7 # ‘1, 9 are external forces and moments with respect to the line ele- 
ment along cl, but at the same time they represent the result of combined 
action of forces and moments which are inner forces and moments on OB and 
AC of the shell as a whole.On the other hand, the inner forces and moments 
acting on OA and BC will be external forces and moments with respect to 
the line element along 5,; their intensities are determined by the left- 
hand sides of Equations (2.1); therefore the equilibrium equations for a 
line element along a t2-line assume the form 

aaJ& iYa2 

Gn 
- N 

2%1 
- = -ala2q1, - 

i3cX1M* 
x + M212 + Qzalaz = ,-- alaznzz 

Taking the algebraic sums of corresponding equations of the two 
systems (2.1) and (2.2). we obtain the equilibrium equations of an 
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element of the shell as a whole, Thus, having introduced the connecting 

functions qlI q2, qn, 7, sl, n2 (we shall call them forces of inter - 
act ion), we were able to resolve the operators of the equilibrium equa- 
tions in terms of partial derivatives into operators for separate coordi- 
nates. 

For the sake of definiteness we shall use the version of the shell 
theory in Love’s form [ 2 1, which is not compulsory for carrying out 
further considerations. Eliminating Q1 and Q2 in (2. l), (2.2) and omit- 
ting some terms within the limits of accepted degree of accuracy, we ob- 
tain 

and 

= -ala2q2 

(2.3) 

G-4) 

We have omitted here also the last equations of the systems (2.1). 
(2.2), which with the assumptions introduced are equivalent to the con- 
dition N,, = N,,, 

The equations obtained can be considered as equilibrium equations for 
the separate curved bars extending along the [,- and t2-lines and of 
width proportional to a2 and aI, respectively. Along their lateral sur- 
faces such bars are acted upon by forces and moments of intensities N21, 

H,, and N,,, M,,, which permit the moment equilibrium condition to be 
satisfied with respect to the n-axis in the absence of bending with re- 
spect to the same axis. 

3. Resolution of the ecruations of the theory of shells. We shall 
adhere to the principle that the resolved equations have to represent 
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two systems of equations for the displacements and slope angles of the 
two groups of line elements extending along e1 and ~$2, respectively. The 
equations connecting the stress resultants with the strain components 
and the strain components with the displacements shall be written in the 
form [ 2 1 

I~, = B (&i + vEk f, 

(3.21 

while E is the modulus of elasticity, v is Poisson’s ratio, h is the 
shell thickness. ul, u2, m are projections of displacement on the Z-, 
y-, n-axes, respectively. Assume first v = 0; then, expressing the stress 
resultants in terms of displacements with the aid of Formulas (3.1), 
(3.2) and substituting into Equations (2.3). (Z-4), we obtain the follow- 
ing two systems of equations for the two groups of line elements extend- 
ing in the directions c, and 52, respectively: 

and 

FM [ul(? u2 w, w(2), f),(2)] =r: 

aul12 
alam + yg- , p 

2 
(2) = _ nz 

1,' 'p2 
(2) = _ 2 5 1.2 
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We find on the left-hand sides of Equations (3.3) and (3.4) the quanti- 

ties n2, I,, 6r and nI, I,, 6~ , respectively, expressed by IQ, u2, tp 
and by 62 or +I o It is, furthermore, easy to conclude that the Flj(j = 

1, 2, 3, 4) represent ordinary differential operators with respect to tl, 

while the Fsj(j = 1, 2, 3, 4) 8re such with respect to 4,. Equations 

(3.3) and (3.4) can be treated as equations for displacements and slope 

angles, identified by corresponding subscripts, for the two groups of 

line elements directed along tr and 5,. The quantities 82 , 4, charac- 

terize the rotation of the cross-section of the element, &, & indicate 

the shear along the element, &, & give the shear across the element. 

In order to achieve a complete resolution of the equations of the 

theory of shells in the sense indicated above, four interaction terms, 

nasUzlY nl, n2, il, lx, had to be introduced additionally; they can be 

treated as intensities of oppositely equal fOrCeS and moments applied to 

the lateral faces of the elements under consideration and combined, re- 

spectively, to couples and bi-couples. There are altogether nine terms of 

the kind just mentioned in (3.3), (3.4). Nine Eatching conditions are 

necessary for the determination of those terms, and these conditions make 

(3.3), (3.4) equivalent to the equations of the theory of shells. Such 

conditions are 

(1) = p, 
ukw 1 a&) 

Ul 
6, (i) = - 

R, +<F k 

If expressions for the interaction forces and moments 8re given with 

indefinite coefficients, then in solving (3.3). (3.4) these coefficients 

c8n be chosen in such a manner as to have the conditions (3.5) satisfied 

in some sense. Thus, the solution of the problem considered will be con- 

structed by a direct method. It is usually convenient, and for 8 majority 

of problems scceptahle, to have the operators (3.3). (3.4) inverted along 

separate lines cz = const, e1 = const, and (3.5) satisfied at separate 

points. In this procedure methods of structural mechanics can be used for 

derivation of the solution of (3.3), (3.4), t8king into aCCOUnt some 

specific properties of (3.3), (3.4) such 8s absence of bending with re- 

spect to the n-axis, torsion with a rigidity proportional to the moment 

of inertia, presence of the last sqU8tfOnS of the systems (3.3), (3.4), 

etc. 

If, in the process of resolution of the original equations, the only 

intention is to arrive at ordinary differential equations without having 
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in mind the possibility of making use of the methods of structural 
mechanics, then the number of interaction forces and moments in (3.3), 
(3.4) can be reduced. Simple transformations permit the conclusion that 

(3.6) 

where the fi represent ordinary differential operators with respect to 

51 and t2. respectively, for the quantities within the brackets. Making 
use of (3.6) we can eliminate I, and I, from (3.3). (3.4); this means 
elimination of the last equations in the systems (3.3)) (3.4) and of the 
last two conditions of the system (3.5). 

In the general case, when v f 0, the right-hand sides of the first 
four equations in (3.3), (3.4) include additional interaction forces and 
moments determined by the quantities N,,, Ml,, in (3.3) and N,,, Mzy in 
(3.4) by means of the formulas 

aai 

’ Fk Niv 

aa. 

-’ a%k 
_L Mi, 

These quantities characterize relative extension across an element 
and relative change of angle between its lateral surfaces. For their de- 
termination four additional matching conditions will be necessary in the 
general case: 

(;q (3.8) 

Resolution of the equations of the theory of shells into the systems 
(3.3). (3.4) is accompanied by resolution of the boundary conditions. 
The system (3.3) is to be supplemented by boundary conditions on the 
sides c, = const, the system (3.4) by boundary conditions on the sides 
(I = const of the bounding contour. A specific scheme of support will 
arise in this case when the line elements, separated from the shell, are 
not in equilibrium under the action of the applied loads and support re- 
actions. It then becomes necessary to prescribe for one end of the ele- 
ment the slope angle and three displacements as indefinite parameters. As 
a result, the quantities indicated will be determined from the equilib- 
rium conditions of the line element considered. 

Thus far we have considered the problem of the theory of shells in 
terms of displacements. If the problem is formulated in terms of stress 
resultants. it may prove expedient to use an incomplete resolution of 
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the original equations, leaving the continuity equations for the strain 
components of the middle surface of the shell L 3 f unresolved. Then the 
five interaction forces and moments, appearing in (2.3), (2.4)) have to 
be determined starting from an approximate fulfilment of the conditions 
N 12 = N21’ Ml2 = Mzl and of the three continuity equations for the strain 
components [ 3 1 ; in addition, they have to satisfy all boundary condi- 
tions. 

4. Exawfes. i. Plate in bending. Assuming al = a2 = 1, R, z R, = CO, 
u1 = u2 = 0, & = x, if2 = y, we obtain from (3.3), (3.4) the following 
system of equations for the two groups of rectilinear elements directed 
along r and y: 

where n 1 = n2 = 0, while II, lg are eliminated on the basis of (3.6). The 
number of interactions in (4.1) can be reduced to two, since from the 
second equations of (4.1) it follows that dr,/dy = ~~,/dx. The matching 
conditions for (4.1) will be 

(4.3 

2. Circular cylindrical shell. Assuming al = 1, a2 = ar R, = 00, 

R2 = a, if, = x, t2 = $, u1 = II, u2 = u, we obtain from (3.3), (3.4) 

$z,(“) 
R -Jgs-= - (Pl - 41h 

a2,W 

L(3x2= 

an, 

- (Pz--42) + -&Y' 

a4&) 

D ax4 

am, 
-=(P,-~9,)-~~ 

L 
~2,(2) &t, 
&&p - ---e+.itg 

a&) 
L- 

aW 
=-l&t, 

D a@,(l) EI 

yQW=- ' 

a@ 
L x = - n2, 

D aGJ2’ 
Tar=- 

12 

It f0ii0~~ also that a+,a+ = a.,iax. and it is sufficient to satis- 
fy one of the conditions (3.5) with respect to 6, , 82 . 

A study of (4.3) and of the assumptions representing the basis for 
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the analysis of arch dams with the aid of arch cantilevers [4 1 leads 
without difficulty to the conclusion that this kind of analysis reduces, 
if the variation in the thickness of the dam is disregarded, to the so- 
lution of (4.3) in connection with carrying out of the corresponding 
matching at a I = QI = al = a2 = 0 with 21, 1, eliminated. Indeed, the 
method of arch cantilevers is based upon subdivision of the dam into a 
system of vertical cantilevers and horizontal circular arches. These 
elements are subjected to external loads and internal interaction forces 
and moments in such a way as to make their radial and tangential dis- 
placements and their slope angles coincide. If UI = q1 = n1 = n2 = 0, 
then the relations (4.3) become equations for the same displacements and 
slope angles of the cantilevers and arches, while Equations (3.5) become 
matching conditions and q2, qn, “I, m2 correspond to the internal inter- 
action forces and moments of the method of arch cantilever. 
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